Essential Statistical Inference: Theory and Methods (Springer Texts in Statistics, #120)

by Dennis D Boos and Leonard A Stefanski

0 ratings • 0 reviews • 0 shelved
Book cover for Essential Statistical Inference

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.

An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.

Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods.

  • ISBN10 1461448190
  • ISBN13 9781461448198
  • Publish Date 6 February 2013
  • Publish Status Withdrawn
  • Out of Print 18 October 2014
  • Publish Country US
  • Imprint Springer
  • Format Paperback (US Trade)
  • Pages 588
  • Language English