Bayesian Modeling of Uncertainty in Low-Level Vision (The Springer International Series in Engineering and Computer Science, #79)

by Richard Szeliski

0 ratings • 0 reviews • 0 shelved
Book cover for Bayesian Modeling of Uncertainty in Low-Level Vision

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

Vision has to deal with uncertainty. The sensors are noisy, the prior knowledge is uncertain or inaccurate, and the problems of recovering scene information from images are often ill-posed or underconstrained. This research monograph, which is based on Richard Szeliski's Ph.D. dissertation at Carnegie Mellon University, presents a Bayesian model for representing and processing uncertainty in low level vision. Recently, probabilistic models have been proposed and used in vision. Sze liski's method has a few distinguishing features that make this monograph im portant and attractive. First, he presents a systematic Bayesian probabilistic estimation framework in which we can define and compute the prior model, the sensor model, and the posterior model. Second, his method represents and computes explicitly not only the best estimates but also the level of uncertainty of those estimates using second order statistics, i.e., the variance and covariance. Third, the algorithms developed are computationally tractable for dense fields, such as depth maps constructed from stereo or range finder data, rather than just sparse data sets. Finally, Szeliski demonstrates successful applications of the method to several real world problems, including the generation of fractal surfaces, motion estimation without correspondence using sparse range data, and incremental depth from motion.
  • ISBN10 1461316383
  • ISBN13 9781461316381
  • Publish Date 30 September 1989
  • Publish Status Withdrawn
  • Out of Print 18 October 2014
  • Publish Country US
  • Imprint Springer My Copy UK
  • Format Paperback (US Trade)
  • Pages 220
  • Language English