Infinity: A Very Short Introduction (Very Short Introductions)
by Ian Stewart
Infinity is an intriguing topic, with connections to religion, philosophy, metaphysics, logic, and physics as well as mathematics. Its history goes back to ancient times, with especially important contributions from Euclid, Aristotle, Eudoxus, and Archimedes. The infinitely large (infinite) is intimately related to the infinitely small (infinitesimal). Cosmologists consider sweeping questions about whether space and time are infinite. Philosophers and mathematicians ranging from Zeno to Russell...
Numeri Complessi, Polinomi, Frazioni Algebriche (Analisi Matematica a Portata Di CLIC, #4)
by Mario Vallorani
We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calder´on-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ran...
Hyperfunctions and Harmonic Analysis on Symmetric Spaces (Progress in Mathematics, #49)
by Henrik Schlichtkrull
This book gives an introductory exposition of the theory of hyperfunctions and regular singularities. This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize.
Aufbaukurs Funktionalanalysis Und Operatortheorie
by Winfried Kaballo
In diesem Buch finden Sie eine Einfuhrung in die Funktionalanalysis und Operatortheorie auf dem Niveau eines Master-Studiengangs. Ausgehend von Fragen zu partiellen Differenzialgleichungen und Integralgleichungen untersuchen Sie lineare Gleichungen im Hinblick auf Existenz und Struktur von Loesungen sowie deren Abhangigkeit von Parametern. Dazu lernen Sie verschiedene Konzepte und Methoden kennen: Distributionen, Fourier-Transformation, Sobolev-Raume, Dualitatstheorie im Rahmen lokalkonvexer R...
Elliptic Curves (Grundlehren der mathematischen Wissenschaften, #231)
by S. Lang
It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diop...
Stochastic Differential Equations (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, #72)
by Iosif I. Gihman and Anatolij V. Skorohod
Stochastic differential equations whose solutions are diffusion (or other random) processes have been the subject of lively mathematical research since the pioneering work of Gihman, Ito and others in the early fifties. As it gradually became clear that a great number of real phenomena in control theory, physics, biology, economics and other areas could be modelled by differential equations with stochastic perturbation terms, this research became somewhat feverish, with the results that a) the n...
We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class of Besov spaces we introduce contains the traditional isotropic Besov spaces obtained by the real interpolation method, but also new spaces that are designed to investigate backwards stochastic differential equations (BSDEs). As examples we discuss the Besov regularity (in th...
Theory of Third-Order Differential Equations
by Seshadev Padhi and Smita Pati
This book discusses the theory of third-order differential equations. Most of the results are derived from the results obtained for third-order linear homogeneous differential equations with constant coefficients. M. Gregus, in his book written in 1987, only deals with third-order linear differential equations. These findings are old, and new techniques have since been developed and new results obtained. Chapter 1 introduces the results for oscillation and non-oscillation of solutions of third-...
Dynamical Systems V (Encyclopaedia of Mathematical Sciences, #5)
by V. I. Arnold, V.S. Afrajmovich, Yu.S Ilyashenko, and L.P. Shil'nikov
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physic...
Approximation Theory, Wavelets and Applications (NATO Science Series C, #454)
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of...
Variational and Monotonicity Methods in Nonsmooth Analysis (Frontiers in Mathematics)
by Nicusor Costea, Alexandru Kristaly, and Csaba Varga
This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature. The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-conta...
Nonlinear Analysis, Differential Equations and Control (NATO Science Series C, #528)
Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last t...
Analysis and Mathematical Physics (Mathematics and its Applications, #24)
by H Triebel
Combined Measure and Shift Invariance Theory of Time Scales and Applications (Developments in Mathematics, #77)
by Chao Wang and Ravi P. Agarwal
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales. First proposed by S. Hilger...
Modern Methods in Mathematical Physics
by Vladimir Ryzhov, Tatiana Fedorova, Kirill Safronov, Shaharin Anwar Sulaiman, and Samsul Ariffin Abdul Karim
This book provides ideas for implementing Wolfram Mathematica to solve linear integral equations. The book introduces necessary theoretical information about exact and numerical methods of solving integral equations. Every method is supplied with a large number of detailed solutions in Wolfram Mathematica. In addition, the book includes tasks for individual study.This book is a supplement for students studying “Integral Equations”. In addition, the structure of the book with individual assignmen...
This book introduces Robinson's nonstandard analysis, an application of model theory in analysis. Unlike some texts, it does not attempt to teach elementary calculus on the basis of nonstandard analysis, but points to some applications in more advanced analysis. The contents proceed from a discussion of the preliminaries to Nonstandard Models; Nonstandard Real Analysis; Enlargements and Saturated Models; Functionals, Generalized Limits, and Additive Measures; and finally Nonstandard Topology and...
Open Mathematics (Open Mathematics)
From a mathematical point of view, the notion of a PDMP is very intuitive and simple to describe. Starting from a point of the state space, the process follows a deterministic trajectory, namely a flow indexed by the mode, until the first jump time, which occurs either spontaneously in a random manner or when the trajectory hits the boundary of the state space. Between two jumps, the mode is assumed to be constant. In both cases, a new point and a new regime are selected by a random operator and...
Numerical Methods for Conservation Laws (Lectures in Mathematics. ETH Zurich)
by Randall J Leveque
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these...
Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics.
by A Bonfiglioli, E Lanconelli, and F Uguzzoni
Especially among Japanese mathematicians Mitio Nagumo (1905-1995) is regarded as one of the greatest pioneers in research on differential equations. However, so far most of his papers have only been published in Japanese journals and were unavailable in the West. This Collected Papers volume contains practically all mathematical papers Nagumo wrote in languages other than Japanese and will be a basic reference volume and essential working tool for every library and for many active mathematicians...