INTRODUCTION 1) Introduction In 1979, Efron introduced the bootstrap method as a kind of universal tool to obtain approximation of the distribution of statistics. The now well known underlying idea is the following : consider a sample X of Xl ' n independent and identically distributed H.i.d.) random variables (r. v,'s) with unknown probability measure (p.m.) P . Assume we are interested in approximating the distribution of a statistical functional T(P ) the -1 nn empirical counterpart of the functional T(P) , where P n := n l:i=l aX. is 1 the empirical p.m. Since in some sense P is close to P when n is large, n * * LLd. from P and builds the empirical p.m. if one samples Xl ' ... , Xm n n -1 mn * * P T(P ) conditionally on := mn l: i =1 a * ' then the behaviour of P m n,m n n n X. 1 T(P ) should imitate that of when n and mn get large. n This idea has lead to considerable investigations to see when it is correct, and when it is not. When it is not, one looks if there is any way to adapt it.
- ISBN13 9780387944784
- Publish Date 24 February 1995
- Publish Status Active
- Publish Country US
- Imprint Springer-Verlag New York Inc.
- Edition Softcover reprint of the original 1st ed. 1995
- Format Paperback
- Pages 230
- Language English