High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a firsthand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.
- ISBN13 9781107065178
- Publish Date 26 March 2015 (first published 18 March 2015)
- Publish Status Inactive
- Out of Print 13 June 2021
- Publish Country GB
- Imprint Cambridge University Press
- Format Hardcover
- Pages 322
- Language English