Chaos theory challenges fundamental ideas in all areas of science, and many of the best examples arise in chemistry. Reactions can become unrepeatable and unpredictable, even though they remain governed by traditional rate equations. Despite the complex appearance of the overall behaviour, the underlying mechanisms are quite simple, and the basic building blocks for chaos - nonlinearity and feedback - both occur quite naturally in chemical systems. Chaos does not appear suddenly or at random, but is created through one of a small number of highly ordered sequences of increasing complexity. These sequences are comprised of qualitative changes in behaviour or "bifurcations". This account of chemical chaos reviews both theory and experiment, emphasizing the simple features that combine to produce "order within disorder". The author begins by revealing the links between chemical kinetics and the interdisciplinary subject to dynamical systems. Various bifurcation sequences are then introduced through representative model schemes, with the emphasis on generality and simplicity.
Chaos arises in both conventional chemical reactions and forced or coupled systems, and both are considered here. Various experimental and diagnostic techniques to test for chaos are then described, and the remaining chapters review experimental studies in a wide range of chemical and biochemical systems.
- ISBN10 0198556519
- ISBN13 9780198556510
- Publish Date 1 June 1991
- Publish Status Active
- Out of Print 14 October 1993
- Publish Country GB
- Publisher Oxford University Press
- Imprint Clarendon Press
- Format Hardcover
- Pages 469
- Language English