Linear vibrations: A theoretical treatment of multi-degree-of-freedom vibrating systems (Mechanics: Dynamical Systems, #7)

by P C Muller and Werner Schiehlen

S. Swierczkowski (Translator)

0 ratings • 0 reviews • 0 shelved
Book cover for Linear vibrations

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

In the last decade the development in vibration analysis was char acterized by increasing demands on precision and by the growing use of electronic computers. At present, improvements in precision are obtained by a more accurate modelling of technical systems. Thus, for instance, a system with one degree of freedom is often not accepted, as it used to be, as a model for vibration analysis in mechanical engineering. As a rule, vehicles and machines have to be modelled as systems with many degrees of freedom such as multibody systems, finite element systems or con tinua. The mathematical description of multi-degree-of-freedom systems leads to matrix representations of the corresponding equations. These are then conveniently analyzed by means of electronic computers, that is, by the analog computer and especially by the digital machine. Hence there exists a mutually stimulating interaction between the growing require ments and the increasing computational facilities. The present book deals with linear vibration analysis of technical systems with many degrees of freedom in a form allowing the use of computers for finding solutions. Part I begins with the classification of vibrating systems. The main characteristics here are the kind of differential equation, the time depen dence of the coefficients and the attributes of the exciting process. Next it is shown by giving examples involving mechanical vibrating systems how to set up equations of motion and how to transform these into state equations.
  • ISBN13 9789401087353
  • Publish Date 13 November 2013 (first published 31 July 1985)
  • Publish Status Active
  • Publish Country NL
  • Imprint Springer
  • Edition Softcover reprint of the original 1st ed. 1985
  • Format Paperback
  • Pages 327
  • Language English