Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions

by Michel L. Lapidus and Machiel van Frankenhuysen

0 ratings • 0 reviews • 0 shelved
Book cover for Fractal Geometry and Number Theory

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo- metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di- mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref- erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap- pendix B. ) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex- tension.
The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.
  • ISBN13 9780817640989
  • Publish Date 10 December 1999
  • Publish Status Active
  • Publish Country US
  • Imprint Birkhauser Boston Inc
  • Edition 1999 ed.
  • Format Hardcover
  • Pages 268
  • Language English