Metamaterials, including their two-dimensional counterparts, are composed of subwavelength-scale artificial particles. These materials have novel electromagnetic properties, and can be artificially tailored for various applications. Based on metamaterials and metasurfaces, many abnormal physical phenomena have been realized, such as negative refraction, invisible cloaking, abnormal reflection and focusing, and many new functions and devices have been developed. The effective medium theory lays the foundation for design and application of metamaterials and metasurfaces, connecting metamaterials with real world applications. In this Element, the authors combine these essential ingredients, and aim to make this Element an access point to this field. To this end, they review classical theories for dielectric functions, effective medium theory, and effective parameter extraction of metamaterials, also introducing front edge technologies like metasurfaces with theories, methods, and potential applications. Energy densities are also included.