Graduate Texts in Mathematics
1 primary work
Book 214
This book is intended for students who wish to get an introduction to the theory of partial differential equations. The author focuses on elliptic equations and systematically develops the relevant existence schemes, always with a view towards nonlinear problems. These are maximum principle methods (particularly important for numerical analysis schemes), parabolic equations, variational methods, and continuity methods. This book also develops the main methods for obtaining estimates for solutions of elliptic equations: Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. Connections between elliptic, parabolic, and hyperbolic equations are explored, as well as the connection with Brownian motion and semigroups. This book can be utilized for a one-year course on partial differential equations. Jurgen Jost is Director of the Max Planck Institute for Mathematics in the Sciences and Professor of Mathematics at the University of Leipzig. He is the author of a number of Springer books, including Postmodern Analysis (1998), Compact Riemann Surfaces (1997) and Riemannian Geometry and Geometric Analysis (1995).
The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998).
The present book is an expanded translation of the original German version, Partielle Differentialgleichungen (1998).