Book 26

The analysis of experimental data resulting from some underlying random process is a fundamental part of most scientific research. Probability Theory and Statistics have been developed as flexible tools for this analyis, and have been applied successfully in various fields such as Biology, Economics, Engineering, Medicine or Psychology. However, traditional techniques in Probability and Statistics were devised to model only a singe source of uncertainty, namely randomness. In many real-life problems randomness arises in conjunction with other sources, making the development of additional "softening" approaches essential. This book is a collection of papers presented at the 2nd International Conference on Soft Methods in Probability and Statistics (SMPS’2004) held in Oviedo, providing a comprehensive overview of the innovative new research taking place within this emerging field.


Book 37

The idea of soft computing emerged in the early 1990s from the fuzzy systems c- munity, and refers to an understanding that the uncertainty, imprecision and ig- rance present in a problem should be explicitly represented and possibly even - ploited rather than either eliminated or ignored in computations. For instance, Zadeh de?ned 'Soft Computing' as follows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques including fuzzy systems, neural networks, and biologically inspired methods such as genetic algorithms. Here, however, we adopt a more straightforward de?nition consistent with the original concept. Hence, soft methods are understood as those uncertainty formalisms not part of mainstream s- tistics and probability theory which have typically been developed within the AI and decisionanalysiscommunity.Thesearemathematicallysounduncertaintymodelling methodologies which are complementary to conventional statistics and probability theory.