Lecture Notes in Mathematics
1 primary work
Book 2011
The Ricci Flow in Riemannian Geometry
by Ben Andrews and Christopher Hopper
Published 25 November 2010
This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Boehm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.