Lecture Notes in Mathematics
2 primary works
Book 1667
Three-space Problems in Banach Space Theory
by Jesus M.F. Castillo and Manuel Gonzalez
Book 2132
Separably Injective Banach Spaces
by Antonio Aviles, Felix Cabello Sanchez, Jesus M.F. Castillo, Manuel Gonzalez, and Yolanda Moreno
This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l /c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L spaces and spaces of universal disposition).
It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.