Springer Finance Lecture Notes
2 total works
Exponential Functionals of Brownian Motion and Related Processes
by Marc Yor
Published 14 August 2001
This volume collects papers about the laws of geometric Brownian motions and their time-integrals, written by the author and coauthors between 1988 and 1998. Throughout the volume, connections with more recent studies involving exponential functionals of Lévy processes are indicated. Some papers originally published in French are made available in English for the first time.
Option Prices as Probabilities
by Christophe Profeta, Bernard Roynette, and Marc Yor
Published 1 January 2010
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?