Studies in Fuzziness and Soft Computing
1 primary work
Book 169
Fuzzy Mathematical Programming and Fuzzy Matrix Games
by C.R. Bector and Suresh Chandra
Published 1 January 2005
Game theory has already proved its tremendous potential for con?ict resolution problems in the ?elds of Decision Theory and Economics. In the recent past, there have been attempts to extend the results of crisp game theory to those con?ict resolution problems which are fuzzy in nature e.g. Nishizaki and Sakawa [61] and references cited there in. These developments have lead to the emergence of a new area in the literature called fuzzy games. Another area in the fuzzy decision theory, which has been growing very fast is the area of fuzzy mathematical programming and its applications to various branches of sciences, Engineering and Management. In the crisp scenario, there exists a beautiful relationship between two person zero sum matrix game theory and duality in linear p- gramming. It is therefore natural to ask if something similar holds in the fuzzy scenario as well. This discussion essentially constitutes the core of our presentation. The objective of this book is to present a systematic and focussed study of the application of fuzzy sets to two very basic areas of decision theory, namely Mathematical Programming and Matrix Game Theory.