Book 14

Perfect Incompressible Fluids

by Jean-Yves Chemin

Published 10 September 1998
The aim of this book is to offer a direct and self-contained access to some of the new or recent results in fluid mechanics. It gives an authoritative account on the theory of the Euler equations describing a perfect incompressible fluid. First of all, the text derives the Euler equations from a variational principle, and recalls the relations on vorticity and pressure. Various weak formulations are proposed. The book then presents the tools of analysis
necessary for their study: Littlewood-Paley theory, action of Fourier multipliers on L spaces, and partial differential calculus. These techniques are then used to prove various recent results concerning vortext patches or sheets, essentially the persistence of the smoothness of the boundary of a
vortex patch, even if that smoothness allows singular points, as well as the existence of weak solutions of the vorticity sheet type. The text also presents properties of microlocal (analytic or Gevrey) regularity of the solutions of Euler equations, and provides links of such properties to the smoothness in time of the flow of the solution vector field.

Book 32

Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analysed. Part II is devoted to a self contained proof of the existence of weak (or
strong) solutions to the incompressible Navier-Stokes equations. Part III deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analysed, and finally rotating
Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinates and those in R(2). In Part IV the stability of Ekman boundary layers, and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.