Book 277

The Moment Problem

by Konrad Schmudgen

Published 22 November 2017

This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments.

In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidimensional truncated moment problems.

The Moment Problem will be particularly useful to graduate students and researchers working on moment problems, functional analysis, complex analysis, harmonic analysis, real algebraic geometry, polynomial optimization, or systems theory. With notes providing useful background information and exercises of varying difficulty illustrating the theory, this book will also serve as a reference on the subject and can be used for self-study.


Book 285

This textbook provides an introduction to representations of general -algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers.

The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of -algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded -algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensatze, induced representations, well-behaved representations and representations on rigged modules.

Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.