SpringerBriefs in Evolutionary Biology
2 total works
Tectonic plates are constantly moving, either crashing into one another creating a mosaic of mountains and shallow seas, or tearing apart and isolating large swathes of land. In both cases plate tectonics separates populations leading to the evolution of biota. Tectonics is also responsible for the destruction life, for instance when large coral reefs or shallow seas are compressed to form mountain peaks. Could recent research into these processes provide enough evidence to show that tectonics may be the ultimate driver of life on Earth?
Our book delves into the current research in tectonics, particularly neotectonics, and its impact on rapid changes on biogeographical classification, also known as bioregionalisation. We also introduce a new term biotectonics that studies the impact of tectonics on biogeoregionalisation. The question we ask is how tectonics directly influences the distribution of biota in four case studies: the Mesozic and early Palaeogene Australides, which spans the Proto-Pacific coast of the South America, Antaractica and Australiasia; and the Neogene of Australia. To conclude we examine the role of neotectonics on tranistion zones and the Amazon Basin and make a case for biotectonic extinction.
Biotectonics of Neotropical Transition Zones
by Lize Hermógenes de Mendonça, Bernard Michaux, and Malte C. Ebach
This book offers an up-to-date review and synthesis of the role of tectonics in Neotropical bioregionalisation, in particular transition zones. The main questions are "What are transition zones?", "How would we identify them?" and, "What are the tectonic drivers of transition zones?" These questions are pertinent as they may reveal a new transition zone within the Caribbean (Antillean sub-region), and provides an up-to-date account of the biotectonics of the Caribbean. In addition, the book contains a detailed tectonic summary of the development of the Andes and the bioregionalisation of the South American Transition Zone.