SpringerBriefs in Mathematics
3 total works
Moments of Linear Positive Operators and Approximation
by Vijay Gupta and Michael Th Rassias
This book is a valuable resource for Graduate students and researchers interested in current techniques and methods within the theory of moments in linear positive operators and approximation theory. Moments are essential to the convergence of a sequence of linear positive operators. Several methods are examined to determine moments including direct calculations, recurrence relations, and the application of hypergeometric series. A collection of operators in the theory of approximation are investigated through their moments and a variety of results are surveyed with fundamental theories and recent developments. Detailed examples are included to assist readers understand vital theories and potential applications.
On Hilbert-Type and Hardy-Type Integral Inequalities and Applications
by Bicheng Yang and Michael Th Rassias
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.