Lecture Notes in Statistics
2 primary works
Book 110
This book provides a mathematically rigorous treatment of the theory of nonparametric estimation and prediction for stochastic processes. It discusses discrete time and continuous time, and the emphasis is on the kernel methods. Several new results are presented concerning optimal and superoptimal convergence rates. How to implement the method is discussed in detail and several numerical results are presented. This book will be of interest to specialists in mathematical statistics and to those who wish to apply these methods to practical problems involving time series analysis.
Book 149
The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert and Banach spaces and general linear processes and statistical prediction. Implementation and numerical applications are also covered. The book assumes knowledge of classical probability theory and statistics.