This monograph provides an introduction and a survey of recent results in potential theory with respect to the Laplace–Beltrami operator D in several complex variables, with special emphasis on the unit ball in Cn. Topics covered include Poisson–Szegö integrals on the ball, the Green's function for D and the Riesz decomposition theorem for invariant subharmonic functions. The extension to the ball of the classical Fatou theorem on non-tangible limits of Poisson integrals, and Littlewood's theorem on the existence of radial limits of subharmonic functions are covered in detail. The monograph also contains recent results on admissible and tangential boundary limits of Green potentials, and Lp inequalities for the invariant gradient of Green potentials. Applications of some of the results to Hp spaces, and weighted Bergman and Dirichlet spaces of invariant harmonic functions are included. The notes are self-contained, and should be accessible to anyone with some basic knowledge of several complex variables.

This comprehensive monograph is ideal for established researchers in the field and also graduate students who wish to learn more about the subject. The text is made accessible to a broad audience as it does not require any knowledge of Lie groups and only a limited knowledge of differential geometry. The author's primary emphasis is on potential theory on the hyperbolic ball, but many other relevant results for the hyperbolic upper half-space are included both in the text and in the end-of-chapter exercises. These exercises expand on the topics covered in the chapter and involve routine computations and inequalities not included in the text. The book also includes some open problems, which may be a source for potential research projects.