Book 62

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.

Book 77

The connected dominating set has been a classic subject studied in graph theory since 1975. Since the 1990s, it has been found to have important applications in communication networks, especially in wireless networks, as a virtual backbone. Motivated from those applications, many papers have been published in the literature during last 15 years. Now, the connected dominating set has become a hot research topic in computer science. In this book, we are going to collect recent developments on the connected dominating set, which presents the state of the art in the study of connected dominating sets. The book consists of 16 chapters. Except the 1st one, each chapter is devoted to one problem, and consists of three parts, motivation and overview, problem complexity analysis, and approximation algorithm designs, which will lead the reader to see clearly about the background, formulation, existing important research results, and open problems. Therefore, this would be a very valuable reference book for researchers in computer science and operations research, especially in areas of theoretical computer science, computer communication networks, combinatorial optimization, and discrete mathematics.

Book 162

This book will serve as a reference, presenting state-of-the-art research on theoretical aspects of optimal sensor coverage problems. Readers will find it a useful tool for furthering developments on theory and applications of optimal coverage; much of the content can serve as material for advanced topics courses at the graduate level. The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more. Topics are introduced in a natural order from simple covers to connected covers, to the lifetime problem. Later, the book begins revisiting earlier problems ranging from the introduction of weights to coverage by k sensors and partial coverage, and from sensor heterogeneity to novel problems such as the barrier coverage problem. The book ends with coverage of mobile sensors, camera sensors, energy-harvesting sensors, underwater sensors, and crowdsensing.


Book 196

Introductory courses in combinatorial optimization are popular at the upper undergraduate/graduate levels in computer science, industrial engineering, and business management/OR, owed to its wide applications in these fields. There are several published textbooks that treat this course and the authors have used many of them in their own teaching experiences.  This present text fills a gap and is organized with a stress on methodology and relevant content, providing a step-by-step approach for the student to become proficient in solving combinatorial optimization problems. Applications and problems are considered via recent technology developments including wireless communication, cloud computing, social networks, and machine learning, to name several, and the reader is led to the frontiers of combinatorial optimization. Each chapter presents common problems, such as minimum spanning tree, shortest path, maximum matching, network flow, set-cover, as well as key algorithms, such as greedy algorithm, dynamic programming, augmenting path, and divide-and-conquer. Historical notes, ample exercises in every chapter, strategically placed graphics, and an extensive bibliography are amongst the gems of this textbook.