Written by one of the best-known probabilists in the world this text offers a clear and modern presentation of modern probability theory and an exposition of the interplay between the properties of metric spaces and those of probability measures. This text is the first at this level to include discussions of the subadditive ergodic theorems, metrics for convergence in laws and the Borel isomorphism theory. The proofs for the theorems are consistently brief and clear and each chapter concludes with a set of historical notes and references. This book should be of interest to students taking degree courses in real analysis and/or probability theory.

In this new edition of a classic work on empirical processes the author, an acknowledged expert, gives a thorough treatment of the subject with the addition of several proved theorems not included in the first edition, including the Bretagnolle-Massart theorem giving constants in the Komlos-Major-Tusnady rate of convergence for the classical empirical process, Massart's form of the Dvoretzky-Kiefer-Wolfowitz inequality with precise constant, Talagrand's generic chaining approach to boundedness of Gaussian processes, a characterization of uniform Glivenko-Cantelli classes of functions, Gine and Zinn's characterization of uniform Donsker classes, and the Bousquet-Koltchinskii-Panchenko theorem that the convex hull of a uniform Donsker class is uniform Donsker. The book will be an essential reference for mathematicians working in infinite-dimensional central limit theorems, mathematical statisticians, and computer scientists working in computer learning theory. Problems are included at the end of each chapter so the book can also be used as an advanced text.