Book 3

Semiconductor Physics

by Sandip Tiwari

Published 1 March 2017
The subject of semiconductor physics today includes not only many of the aspects that constitute solid state physics, but also much more. It includes what happens at the nanoscale and at surfaces and interfaces, behavior with few interaction events and few carriers —- electrons and their quasi-particle holes —- in the valence bands, the exchange of energies in various forms, the coupling of energetic events over short and long length scales, quantum reversibility
tied to macroscale linearity and eventually to nonlinearities, the thermodynamic and statistical consequences of fluctuation-dissipation, and others. This text brings together traditional solid-state approaches from the 20th century with developments of the early part of the 21st century, to reach an
understanding of semiconductor physics in its multifaceted forms. It reveals how an understanding of what happens within the material can lead to insights into what happens in its use.

The collection of four textbooks in the Electroscience series culminates in a comprehensive understanding of nanoscale devices — electronic, magnetic, mechanical and optical — in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.

Nanoscale Device Physics

by Sandip Tiwari

Published 1 September 2016
Nanoscale devices differ from larger microscale devices because they depend on the physical phenomena and effects that are central to their operation. This textbook illuminates the behavior of nanoscale devices by connecting them to the electronic, as well as magnetic, optical and mechanical properties, which fundamentally affect nanoscale devices in fascinating ways. Their small size means that an understanding of the phenomena measured is even more important, as their effects are so dominant and the changes in scale of underlying energetics and response are significant. Examples of these include classical effects such as single electron effects, quantum effects such as the states accessible as well as their properties; ensemble effects ranging from consequences of the laws of numbers to changes in properties arising from different magnitudes of the interactions, and others. These interactions, with the limits on size, make their physical behavior interesting, important and useful.

The collection of four textbooks in the Electroscience Series culminates in a comprehensive understanding of nanoscale devices -- electronic, magnetic, mechanical and optical -- in the 4th volume. The series builds up to this last subject with volumes devoted to underlying semiconductor and solid-state physics.