Complex Variables 2ed

by Mark J. Ablowitz

Published 1 January 2003

Complex variables provide powerful methods for attacking problems that can be very difficult to solve in any other way, and it is the aim of this book to provide a thorough grounding in these methods and their application. Part I of this text provides an introduction to the subject, including analytic functions, integration, series, and residue calculus and also includes transform methods, ODEs in the complex plane, and numerical methods. Part II contains conformal mappings, asymptotic expansions, and the study of Riemann–Hilbert problems. The authors provide an extensive array of applications, illustrative examples and homework exercises. This 2003 edition was improved throughout and is ideal for use in undergraduate and introductory graduate level courses in complex variables.

Nonlinear Dispersive Waves

by Mark J. Ablowitz

Published 8 September 2011
The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.



The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painleve equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.