This book introduces and illustrates modeling, sensing, and control methods for analyzing, designing, and developing spherical motors. It systematically presents models for establishing the relationships among the magnetic fields, position/orientation and force/torque, while also providing time-efficient solutions to assist researchers and engineers in studying and developing these motors. In order to take full advantage of spherical motors' compact structure in practical applications, sensing and control methods that utilize their magnetic fields and eliminate the need to install external sensors for feedback are proposed. Further, the book investigates for the first time spherical motors' force/torque manipulation capability, and proposes algorithms enabling the ball-joint-like end-effector for haptic use based on these motors' hybrid position/force actuation modes. While systematically presenting approaches to their design, sensing and control, the book also provides many examples illustrating the implementation issues readers may encounter.



This book presents the theoretical research and application results of a study on flexible mechatronics (flexonics). Formulating distributed models in both time and spatial domains using a geometric approach, it presents a simple yet practical field-based sensing method for robotics and manufacturing, and illustrates its applications with examples such as exoskeletons, mobile sensor network and intelligent sensing.The book is of interest to researchers, engineers and graduate students in robotics, manufacturing and automation engineering who wish to learn the core principles, theories, technologies, and applications of flexonics.