Springer Texts in Statistics
4 total works
The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.
Providing a wide-ranging introduction to the use of linear models in analyzing data, this text presents a vector space and projections approach to the subject. The topics covered include ANOVA, estimation, hypothesis testing, multiple comparison, regression analysis, and experimental design. Also covered are: testing for lack of fit; models with singular covariance matrices; variance component estimation; best linear prediction; colinearity; and variable selection.
This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.
Linear Models for Multivariate, Time Series, and Spatial Data
by Ronald Christensen
Published 5 December 1990
A companion volume to Plane answers to complex questions: the theory of linear models (1987), presenting six chapters with shallow treatments of very broad topics showing how the properties of three fundamental ideas from standard linear model theory can be used to examine multivariate, time series,