Encyclopedia of Mathematics and its Applications
3 total works
Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Levy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.
Stochastic Equations in Infinite Dimensions
by Guiseppe da Prato and Jerzy Zabczyk
Published 3 December 1992
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic Partial Differential Equations with Levy Noise
by S. Peszat and Jerzy Zabczyk
Published 11 October 2007
Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Levy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Levy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science.