Topological Fixed Point Theory and Its Applications
2 primary works
Book 1
Topological Fixed Point Principles for Boundary Value Problems
by J. Andres and Lech Gorniewicz
Published 31 July 2003
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature.
Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
Book 4
Topological Fixed Point Theory of Multivalued Mappings
by Lech Gorniewicz
Published 30 September 1999
This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework. Topics covered include the basic theory of set-valued mappings with both convex and nonconvex values, approximation and homological methods in the fixed point theory together with a thorough discussion of various index theories for mappings with a topologically complex structure of values, applications to many fields of mathematics, mathematical economics and related subjects, and the fixed point approach to the theory of ordinary differential inclusions. The work emphasizes the topological aspect of the theory, and gives special attention to the Lefschetz and Nielsen fixed point theory for acyclic valued mappings with diverse compactness assumptions via graph approximation and the homological approach.