Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.


Boiling Heat Transfer in Dilute Emulsions synthesizes recent advances and established understanding on the subject of boiling in dilute emulsions. Experimental results from various sources are collected and analyzed, including contemporary experiments that correlate visualization with heat transfer data. Published models of boiling heat transfer in dilute emulsions, and their implementation, are described and assessed against experimental data.

This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume’s description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book’s coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.

This Brief reports on heat transfer from a solid boundary in a saturated porous medium. Experiments reveal overall heat transfer laws when the flow along the wall is driven by buoyancy produced by large temperature differences, and mathematical analysis using advanced volume-averaging techniques produce estimates of how heat is dispersed in the porous zone. Engineers, hydrologists and geophysicists will find the results valuable for validation of laboratory and field tests, as well as testing their models of dispersion of heat and mass in saturated media.

 


This SpringerBrief presents a recent advancement in modeling and measurement of the effect of surface wettability on the defrost process. Carefully controlled laboratory measurements of the defrosting of cooled surfaces are used to reveal the effect of surface wetting properties on the extent and speed of frost removal by melting or slumping. The experiments are accompanied by visualization of frost removal at several defrosting conditions. Analysis breaks the defrost process into three stages according to the behavior of the meltwater. Surface wetting factors are included, and become significant when sufficient meltwater accumulates between the saturated frost layer and the surface. The book is aimed at researchers, practicing engineers and graduate students.