Perspectives in Mathematical Logic
1 total work
This work deals with set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. Consequently, the theory of iterated forcing is developed. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. In addition to particular consistency results, the author shows methods which can be used for such independence results. Many of these are presented in an "axiomatic" framework (a la Martin's axiom) for this reason. The main aim of this book is to enable a researcher interested in an independence result of the appropriate kind, to have much of the work done for him, thus allowing him to quote general results.