Book 25

Fuzzy and Neural

by James J. Buckley and Thomas Feuring

Published 22 January 1999
This book is about recent research area described as the intersection of fuzzy sets, (layered, feedforward) neural nets and evolutionary algorithms. Also called "soft computing". The treatment is elementary in that all "proofs" have been relegated to the references and the only mathematical prerequisite is elementary differential calculus. No previous knowledge of neural nets nor fuzzy sets is needed. Most of the discussion centers around the authors' own research in this area over the last ten years. The book brings together results on: (1) approximations between neural nets and fuzzy systems; (2) building hybrid neural nets for fuzzy systems; (3) approximations between fuzzy neural nets for fuzzy systems. New results include the use of evolutionary algorithms to train fuzzy neural nets and the introduction of a "fuzzy teaching machine". The interaction between fuzzy and neural is also illustrated in the use of neural nets to solve fuzzy problems and the use of fuzzy neural nets to solve the "overfitting" problem of regular neural nets. Besides giving a comprehensive theoretical survey of these results the authors also survey the unsolved problems in this exciting, new, area of research.

Book 88

This book is an excellent starting point for any curriculum in fuzzy systems fields such as computer science, mathematics, business/economics and engineering. It covers the basics leading to: fuzzy clustering, fuzzy pattern recognition, fuzzy database, fuzzy image processing, soft computing, fuzzy applications in operations research, fuzzy decision making, fuzzy rule based systems, fuzzy systems modeling, fuzzy mathematics. It is not a book designed for researchers - it is where you really learn the "basics" needed for any of the above-mentioned applications. It includes many figures and problem sets at the end of sections.

Book 91

The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.

Book 115

Fuzzy Probabilities

by James J. Buckley

Published 26 November 2002
In probability and statistics we often have to estimate probabilities and parameters in probability distributions using a random sample. Instead of using a point estimate calculated from the data we propose using fuzzy numbers which are constructed from a set of confidence intervals. In probability calculations we apply constrained fuzzy arithmetic because probabilities must add to one. Fuzzy random variables have fuzzy distributions. A fuzzy normal random variable has the normal distribution with fuzzy number mean and variance. Applications are to queuing theory, Markov chains, inventory control, decision theory and reliability theory.

Book 149

Fuzzy Statistics

by James J. Buckley

Published 5 April 2004
1. 1 Introduction This book is written in four major divisions. The first part is the introductory chapters consisting of Chapters 1 and 2. In part two, Chapters 3-11, we develop fuzzy estimation. For example, in Chapter 3 we construct a fuzzy estimator for the mean of a normal distribution assuming the variance is known. More details on fuzzy estimation are in Chapter 3 and then after Chapter 3, Chapters 4-11 can be read independently. Part three, Chapters 12- 20, are on fuzzy hypothesis testing. For example, in Chapter 12 we consider the test Ho : /1 = /10 verses HI : /1 f=- /10 where /1 is the mean of a normal distribution with known variance, but we use a fuzzy number (from Chapter 3) estimator of /1 in the test statistic. More details on fuzzy hypothesis testing are in Chapter 12 and then after Chapter 12 Chapters 13-20 may be read independently. Part four, Chapters 21-27, are on fuzzy regression and fuzzy prediction. We start with fuzzy correlation in Chapter 21. Simple linear regression is the topic in Chapters 22-24 and Chapters 25-27 concentrate on multiple linear regression. Part two (fuzzy estimation) is used in Chapters 22 and 25; and part 3 (fuzzy hypothesis testing) is employed in Chapters 24 and 27. Fuzzy prediction is contained in Chapters 23 and 26. A most important part of our models in fuzzy statistics is that we always start with a random sample producing crisp (non-fuzzy) data.

Book 171

Simulating Fuzzy Systems

by James J. Buckley

Published 1 January 2005

Simulating Fuzzy Systems demonstrates how many systems naturally become fuzzy systems and shows how regular (crisp) simulation can be used to estimate the alpha-cuts of the fuzzy numbers used to analyze the behavior of the fuzzy system. This monograph presents a concise introduction to fuzzy sets, fuzzy logic, fuzzy estimation, fuzzy probabilities, fuzzy systems theory, and fuzzy computation. It also presents a wide selection of simulation applications ranging from emergency rooms to machine shops to project scheduling, showing the varieties of fuzzy systems.


Book 196

This book combines material from our previous books FP (Fuzzy Probabilities: New Approach and Applications,Physica-Verlag, 2003) and FS (Fuzzy Statistics, Springer, 2004), plus has about one third new results. From FP we have material on basic fuzzy probability, discrete (fuzzy Poisson,binomial) and continuous (uniform, normal, exponential) fuzzy random variables. From FS we included chapters on fuzzy estimation and fuzzy hypothesis testing related to means, variances, proportions, correlation and regression. New material includes fuzzy estimators for arrival and service rates, and the uniform distribution, with applications in fuzzy queuing theory. Also, new to this book, is three chapters on fuzzy maximum entropy (imprecise side conditions) estimators producing fuzzy distributions and crisp discrete/continuous distributions. Other new results are: (1) two chapters on fuzzy ANOVA (one-way and two-way); (2) random fuzzy numbers with applications to fuzzy Monte Carlo studies; and (3) a fuzzy nonparametric estimator for the median.

Book 222

1. 1 Introduction The objective of this book is to introduce Monte Carlo methods to ?nd good approximate solutions to fuzzy optimization problems. Many crisp (nonfuzzy) optimization problems have algorithms to determine solutions. This is not true for fuzzy optimization. There are other things to discuss in fuzzy optimization, which we will do later onin the book, like? and between fuzzy numbers since there will probably be fuzzy constraints, and how do we evaluate max/minZ for Z the fuzzy value of the objective function. This book is divided into four parts: (1) Part I is the Introduction containing Chapters 1-5; (2) Part II, Chapters 6-16, has the applications of our Monte Carlo method to obtain approximate solutions to fuzzy optimization problems; (3)PartIII,comprisingChapters17-27,outlinesour“un?nishedbusiness”which are fuzzy optimization problems for which we have not yet applied our Monte Carlomethodtoproduceapproximatesolutions;and(4)PartIVisoursummary, conclusions and future research. 1. 1. 1 Part I First we need to be familiar with fuzzy sets. All you need to know about fuzzy sets for this book comprises Chapter 2. For a beginning introduction to fuzzy sets and fuzzy logic see [2]. Three other items related to fuzzy sets, needed in this book, are also in Chapter 2: (1) in Section 2. 5 we discuss how we have dealt in the past with determining max/min(Z)for Z a fuzzy set representing the value of anobjective function in a fuzzy optimization problem; (2) in Section 2.