Book 2

The overwhelming focus of this 2nd volume of “Physics of Lakes” is adequately expressed by its subtitle “Lakes as Oscillators”. It deals with barotropic and baroclinic waves in homogeneous and stratified lakes on the rotating Earth and comprises 12 chapters, starting with rotating shallow-water waves, demonstrating their classification into gravity and Rossby waves for homogeneous and stratified water bodies. This leads to gravity waves in bounded domains of constant depth, Kelvin, Poincaré and Sverdrup waves, reflection of such waves in gulfs and rectangles and their description in sealed basins as barotropic ‘inertial waves proper’. The particular application to gravity waves in circular and elliptical basins of constant depth leads to the description of Kelvin-type and Poincaré-type waves and their balanced description in basins of arbitrary geometry on the rotating Earth. Consideration of two-, three- and n-layer fluids with sharp interfaces give rise to the description of gravitywaves of higher order baroclinicity with experimental corroboration in a laboratory flume and e.g. in Lake of Lugano, Lake Banyoles and Lake Biwa. Barotropic wave modes in Lake Onega with complex geometry show that data and computational output require careful interpretation. Moreover, a summer field campaign in Lake of Lugano and its two-layer modal analysis show that careful statistical analyses of the data are requested to match data with computational results. Three chapters are devoted to topographic Rossby waves. Conditions are outlined for which these waves are negligibly affected by baroclinicity. Three classes of these large period modes are identified: channel modes, so-called Ball modes and bay modes, often with periods which lie very close together. The last chapter deals with an entire class of Chrystal-type equations for barotropic waves in elongated basins which incorporate the effects of the rotation of the Earth.

This third volume describes continuous bodies treated as classical (Boltzmann) and spin (Cosserat) continua or fluid mixtures of such bodies. It discusses systems such as Boltzmann continua (with trivial angular momentum) and Cosserat continua (with nontrivial spin balance) and formulates the balance law and deformation measures for these including multiphase complexities. Thermodynamics is treated in the spirit of Müller–Liu: it is applied to Boltzmann-type fluids in three dimensions that interact with neighboring fluids on two-dimensional contact surfaces and/or one-dimensional contact lines. For all these situations it formulates the balance laws for mass, momenta, energy, and entropy. Further, it introduces constitutive modeling for 3-, 2-, 3-d body parts for general processes and materially objective variable sets and their reduction to equilibrium and non-equilibrium forms.

Typical (reduced) fluid spin continua are liquid crystals. Prominent nematic examples of these include the Ericksen–Leslie–Parodi (ELP) formulation, in which material particles are equipped with material unit vectors (directors). Nematic liquid crystals with tensorial order parameters of rank 1 to n model substructure behavior better, and for both classes of these, the book analyzes the thermodynamic conditions of consistency.

Granular solid–fluid mixtures are generally modeled by complementing the Boltzmann laws with a balance of fluctuation (kinetic) energy of the particles. The book closes by presenting a full Reynolds averaging procedure that accounts for higher correlation terms e.g. a k-epsilon formulation in classical turbulence. However, because the volume fraction is an additional variable, the theory also incorporates ‘k-epsilon equations’ for the volume fraction.

Mixture concepts are nowadays used in a great number of subjects of the - ological, chemical, engineering, natural and physical sciences (to name these alphabetically) and the theory of mixtures has attained in all these dis- plines a high level of expertise and specialisation. The digression in their development has on occasion led to di?erences in the denotation of special formulations as ‘multi-phase systems’ or ‘non-classical mixtures’, ‘structured mixtures’, etc. , and their representatives or defenders often emphasise the di?erences of these rather than their common properties. Thismonographisanattempttoviewtheoreticalformulationsofprocesses which take place as interactions among various substances that are spatially intermixedandcanbeviewedtocontinuously?llthespacewhichtheyoccupy as mixtures. Moreover, we shall assume that the processes can be regarded to becharacterisedbyvariableswhichobeyacertaindegreeofcontinuityintheir evolution, so that the relevant processes can be described mathematically by balance laws, in global or local form, eventually leading to di?erential and/or integralequations,towhichtheusualtechniquesoftheoreticalandnumerical analysis can be applied. Mixtures are generally called non-classical, if, apart from the physical laws (e. g. balances of mass, momenta, energy and entropy), also further laws are postulated,whicharelessfundamental,butmaydescribesomefeaturesofthe micro-structure on the macroscopic level. In a mixture of ?uids and solids – thesearesometimescalledparticleladensystems–thefractionofthevolume that is occupied by each constituent is a signi?cant characterisation of the micro-structure that exerts some in?uence on the macro-level at which the equations governing the processes are formulated. Forsolid-?uid mixtures at high solids fraction where particle contact is essential, friction between the particles gives rise to internal stresses, which turn out to be best described by an internal symmetric tensor valued variable.

A thematic introduction to the modern theory of continuum mechanics and thermodynamics is presented from the viewpoint of granular and porous materials. In the approach taken here, granular and porous media are treated as continuous macroscopic systems of which the overall response is significantly influenced and determined by microstructural effects. In the continuum mechanical modeling, those microscale effects are captured by the introduction of so-called internal variables which account for geometric and material inhomogeneities or the multiphase nature of granular mixtures. Describing the evolution of such internal variables by additional balance laws, the resulting continuum-thermodynamical system requires careful analysis, including, e.g. the application of the entropy principle of Muller with the corresponding approach of exploitation as suggested by Liu. The book is self-contained and addresses an interdisciplinary audience including civil and geotechnical engineers, physicists, applied mathematicians, soil mechanicians and continuum mechanicians.