Series on Concrete & Applicable Mathematics
5 primary works
Book 7
In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end.The topics covered in this unique book are wide-ranging and diverse. The opening chapters examine the probabilistic Ostrowski type inequalities, and various related ones, as well as the largely discusses about the Grothendieck type probabilistic inequalities. The book is also about inequalities in information theory and the Csiszar's f-Divergence between probability measures. A great section of the book is also devoted to the applications in various directions of Geometry Moment Theory. Also, the development of the Gruss type and Chebyshev-Gruss type inequalities for Stieltjes integrals and the applications in probability are explored in detail. The final chapters discuss the important real analysis methods with potential applications to stochastics. The book will be of interest to researchers and graduate students, and it is also seen as an invaluable reference book to be acquired by all science libraries as well as seminars that conduct discussions on related topics.
Book 11
This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end.The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and Hardy-Opial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as Chebyshev-Gruss, Gruss and Comparison of Means inequalities are studied.The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries.
Book 16
This monograph presents the author's work of the last five years in approximation theory. The chapters are self-contained and can be read independently. Readers will find the topics covered are diverse and advanced courses can be taught out of this book.The first part of the book is dedicated to fractional monotone approximation theory introduced for the first time by the author, taking the related ordinary theory of usual differentiation at the fractional differentiation level with polynomials and splines as approximators. The second part deals with the approximation by discrete singular operators of the Favard style, for example, of the Picard and Gauss-Weierstrass types. Then, it continues in a very detailed and extensive chapter on approximation by interpolating operators induced by neural networks, a connection to computer science. This book ends with the approximation theory and functional analysis on time scales, a very modern topic, detailing all the pros and cons of this method.The results in this book are expected to find applications in many areas of pure and applied mathematics. So far, very little is written about fractional approximation theory which is at its infancy. As such, it is suitable for researchers, graduate students, and performing seminars as well as an invaluable resource for all science libraries.
Book 17
This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Gruss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Gruss and Ostrowski type inequalities involving s-convexity of functions; and also examines the general case when several functions are involved. Then, it presents the general fractional Hermite-Hadamard type inequalities using m-convexity and (s, m)-convexity. Finally, it introduces the reduction method in fractional calculus and its connection to fractional Ostrowski type inequalities is studied.This book's results are expected to find applications in many areas of pure and applied mathematics, especially in difference equations and fractional differential equations. The chapters are self-contained and can be read independently, and advanced courses can be taught out of it. It is suitable for researchers, graduate students, seminars of the above subjects, and serves well as an invaluable resource for all science libraries.
Book 20
In this monograph, we present the authors' recent work of the last seven years in Approximation Theory. Chapters are self-contained and can be read independently and advanced courses can be taught out of this book. Here our generalized discrete singular operators are of the following types: Picard, Gauss-Weierstrass and Poisson-Cauchy operators. We treat both the unitary and non-unitary, univariate and multivariate cases of these operators, which are not necessarily positive operators. The book's results are expected to find applications in many areas of pure and applied mathematics, and statistics. As such, it is suitable for researchers, graduate students, and seminars of related subjects, and serves well as an invaluable resource for all science libraries.