De Gruyter Expositions in Mathematics
7 total works
Yakov G. Berkovich; Lev S. Kazarin; Emmanuel M. Zhmud': Characters of Finite Groups. Volume 1
by Yakov G. Berkovich, Lev S. Kazarin, and Emmanuel M. Zhmud'
Published 18 December 2017
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
Yakov G. Berkovich; Lev S. Kazarin; Emmanuel M. Zhmud': Characters of Finite Groups. Volume 2
by Yakov G. Berkovich, Lev S. Kazarin, and Emmanuel M. Zhmud'
Published 17 December 2018
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
Characters of Finite Groups
by Yakov G. Berkovich, Lev S. Kazarin, and Emmanuel M. Zhmud'
Published 20 May 2013
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics.
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.
Editorial Board
Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany
Honorary Editor
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Titles in planning include
Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject.
Editorial Board
Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil
Walter D. Neumann, Columbia University, New York, USA
Markus J. Pflaum, University of Colorado, Boulder, USA
Dierk Schleicher, Jacobs University, Bremen, Germany
Katrin Wendland, University of Freiburg, Germany
Honorary Editor
Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia
Titles in planning include
Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)
Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)
Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)
Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)
Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 6
by Yakov G. Berkovich and Zvonimir Janko
Published 25 June 2018
This is the sixth volume of a comprehensive and elementary treatment of finite group theory. This volume contains many hundreds of original exercises (including solutions for the more difficult ones) and an extended list of about 1000 open problems. The current book is based on Volumes 1-5 and it is suitable for researchers and graduate students working in group theory.
Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 2
by Yakov Berkovich and Zvonimir Janko
Published 17 November 2008
This is the second of three volumes devoted to elementary finite p-group theory. Similar to the first volume, hundreds of important results are analyzed and, in many cases, simplified. Important topics presented in this monograph include: (a) classification of p-groups all of whose cyclic subgroups of composite orders are normal, (b) classification of 2-groups with exactly three involutions, (c) two proofs of Ward's theorem on quaternion-free groups, (d) 2-groups with small centralizers of an involution, (e) classification of 2-groups with exactly four cyclic subgroups of order 2n > 2, (f) two new proofs of Blackburn's theorem on minimal nonmetacyclic groups, (g) classification of p-groups all of whose subgroups of index p2 are abelian, (h) classification of 2-groups all of whose minimal nonabelian subgroups have order 8, (i) p-groups with cyclic subgroups of index p2 are classified.
This volume contains hundreds of original exercises (with all difficult exercises being solved) and an extended list of about 700 open problems. The book is based on Volume 1, and it is suitable for researchers and graduate students of mathematics with a modest background on algebra.
This volume contains hundreds of original exercises (with all difficult exercises being solved) and an extended list of about 700 open problems. The book is based on Volume 1, and it is suitable for researchers and graduate students of mathematics with a modest background on algebra.
Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 3
by Yakov Berkovich and Zvonimir Janko
Published 1 January 2011
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume:
impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator.
The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator.
The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Yakov Berkovich; Zvonimir Janko: Groups of Prime Power Order. Volume 1
by Yakov Berkovich
Published 17 November 2008
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p-1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index.
The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.