Book 29


Book 34

This paper is a largely expository account of the theory of p x p matrix polyno­ mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible.

Book 38

This book provides an introduction to the modern theory of polynomials whose coefficients are linear bounded operators in a Banach space - operator polynomials. This theory has its roots and applications in partial differential equations, mechanics and linear systems, as well as in modern operator theory and linear algebra. Over the last decade, new advances have been made in the theory of operator polynomials based on the spectral approach. The author, along with other mathematicians, participated in this development, and many of the recent results are reflected in this monograph. It is a pleasure to acknowledge help given to me by many mathematicians. First I would like to thank my teacher and colleague, I. Gohberg, whose guidance has been invaluable. Throughout many years, I have worked wtih several mathematicians on the subject of operator polynomials, and, consequently, their ideas have influenced my view of the subject; these are I. Gohberg, M. A. Kaashoek, L. Lerer, C. V. M. van der Mee, P. Lancaster, K. Clancey, M. Tismenetsky, D. A. Herrero, and A. C. M. Ran. The following mathematicians gave me advice concerning various aspects of the book: I. Gohberg, M. A. Kaashoek, A. C. M. Ran, K. Clancey, J. Rovnyak, H. Langer, P.

Book 47

The classicallossless inverse scattering (LIS) problem of network theory is to find all possible representations of a given Schur function s(z) (i. e. , a function which is analytic and contractive in the open unit disc D) in terms of an appropriately restricted class of linear fractional transformations. These linear fractional transformations corre- spond to lossless, causal, time-invariant two port networks and from this point of view, s(z) may be interpreted as the input transfer function of such a network with a suitable load. More precisely, the sought for representation is of the form s(Z) = -{ -A(Z)SL(Z) + B(z)}{ -C(Z)SL(Z) + D(z)} -1 , (1. 1) where "the load" SL(Z) is again a Schur function and _ [A(Z) B(Z)] 0( ) (1. 2) Z - C(z) D(z) is a 2 x 2 J inner function with respect to the signature matrix This means that 0 is meromorphic in D and 0(z)* J0(z) ::5 J (1. 3) for every point zED at which 0 is analytic with equality at almost every point on the boundary Izi = 1.
A more general formulation starts with an admissible matrix valued function X(z) = [a(z) b(z)] which is one with entries a(z) and b(z) which are analytic and bounded in D and in addition are subject to the constraint that, for every n, the n x n matrix with ij entry equal to X(Zi)J X(Zj )* i,j=l, ...

Book 160

This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.


Book 165

Schur analysis originated with an 1917 article which associated to a function, which is analytic and contractive in the open unit disk, a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients, often named reflection coefficients in signal processing. This volume comprises seven essays dedicated to the analysis of Schur and Caratheodory functions and to the solutions of problems for these classes.