Polynomials and Vanishing Cycles (Cambridge Tracts in Mathematics)
by Mihai Tibar
The behaviour of vanishing cycles is the cornerstone for understanding the geometry and topology of families of hypersurfaces, usually regarded as singular fibrations. This self-contained tract proposes a systematic geometro-topological approach to vanishing cycles, especially those appearing in non-proper fibrations, such as the fibration defined by a polynomial function. Topics which have been the object of active research over the past 15 years, such as holomorphic germs, polynomial functions...
Combinatorial Methods in Topology and Algebra (Springer INdAM, #12)
Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in s...
Topological Signal Processing (Mathematical Engineering)
by Michael Robinson
Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems.In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal proces...
Topology: A Very Short Introduction (Very Short Introductions)
by Richard Earl
How is a subway map different from other maps? What makes a knot knotted? What makes the Möbius strip one-sided? These are questions of topology, the mathematical study of properties preserved by twisting or stretching objects. In the 20th century topology became as broad and fundamental as algebra and geometry, with important implications for science, especially physics. In this Very Short Introduction Richard Earl gives a sense of the more visual elements of topology (looking at surfaces) as...
We are all familiar with the everyday notion of two-sided symmetry, as viewed for example in the external form of the human body. But in its broadest interpretation symmetry is a property which involves regularity and repetition. In this sense symmetry can be found everywhere, especially in science and art. The aim of this book is to present selected examples of symmetry, drawn from a wide variety of topics, in a way that will be understandable to students and teachers of mathematics as well as...
Function Spaces with Uniform, Fine and Graph Topologies (SpringerBriefs in Mathematics)
by Robert A. McCoy, Subiman Kundu, and Varun Jindal
This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fin...
Categories and Functors (Pure & Applied Mathematics S.) (Pure and Applied Mathematics)
by B Pareigis
Topology And Physics
'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems ... The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology ... A rich, well-organized, and comprehensive overview of remarkable and...
60 Worksheets - Greater Than for 3 Digit Numbers (60 Days Math Greater Than, #3)
by Kapoo Stem
Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjec- tures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Ou...
Morse Theory and Floer Homology (Universitext)
by Michele Audin and Mihai Damian
This book is an introduction to modern methods of symplectic topology. It is devoted to explaining the solution of an important problem originating from classical mechanics: the 'Arnold conjecture', which asserts that the number of 1-periodic trajectories of a non-degenerate Hamiltonian system is bounded below by the dimension of the homology of the underlying manifold.The first part is a thorough introduction to Morse theory, a fundamental tool of differential topology. It defines the Morse com...
Almost every scientist has heard of catastrophe theory and knows that there has been a considerable amount of controversy surrounding it. Yet comparatively few know anything more about it than they may have read in an article written for the general public. The aim of this book is to make it possible for anyone with a comparatively modest background in mathematics - no more than is usually included in a first year university course for students not specialising in the subject - to understand the...
Infinite Dimensional Lie Algebras (Progress in Mathematics, #44)
by Victor G. Kac
This is the third, substantially revised edition of this important monograph. The book is concerned with Kac-Moody algebras, a particular class of infinite-dimensional Lie algebras, and their representations. It is based on courses given over a number of years at MIT and in Paris, and is sufficiently self-contained and detailed to be used for graduate courses. Each chapter begins with a motivating discussion and ends with a collection of exercises, with hints to the more challenging problems.
Topological and Statistical Methods for Complex Data (Mathematics and Visualization)
This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the man...
Differential Topology and Geometry with Applications to Physics
by Professor Eduardo Nahmad-Achar
Algebraic Topology (Lecture Notes in Mathematics, #2194)
Held during algebraic topology special sessions at the Vietnam Institute for Advanced Studies in Mathematics (VIASM, Hanoi), this set of notes consists of expanded versions of three courses given by G. Ginot, H.-W. Henn and G. Powell. They are all introductory texts and can be used by PhD students and experts in the field. Among the three contributions, two concern stable homotopy of spheres: Henn focusses on the chromatic point of view, the Morava K(n)-localization and the cohomology of the M...
Generalized Clifford Parallelism (Cambridge Tracts in Mathematics)
by J.A. Tyrrell and J.G. Semple
The authors of this tract present a treatment of generalised Clifford parallelism within the framework of complex projective geometry. After a brief survey of the necessary preliminary material, the principal properties of systems of mutually Clifford parallel spaces are developed, centred round discussion of an extended form of the Hurwitz - Radon matrix equations. Later chapters deal with methods for the construction and representation of such systems. Much of the work in the tract is previou...
Recent success with the four-dimensional Poincare conjecture has revived interest in low-dimensional topology, especially the three-dimensional Poincare conjecture and other aspects of the problems of classifying three-dimensional manifolds. These problems have a driving force, and have generated a great body of research, as well as insight.The main topics treated in this book include a paper by V Poenaru on the Poincare conjecture and its ramifications, giving an insight into the herculean work...
A Course on Surgery Theory (Annals of Mathematics Studies)
by Stanley Chang and Shmuel Weinberger
An advanced treatment of surgery theory for graduate students and researchers Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an...
From the reviews of Vol. IV: "This is the fourth volume of J-P. Serre's "Collected Papers" covering the period 1985-1998. Items, numbered 133-173, contain "the essence" of his work from that period and are devoted to number theory, algebraic geometry, and group theory. Half of them are articles and another half are summaries of his courses in those years and letters. Most courses have never been previously published, nor proofs of the announced results. The letters reproduced, however (in partic...
Backgrounds Of Arithmetic And Geometry: An Introduction (Series In Pure Mathematics, #23)
by Dan Branzei and Radu Miron
The book is an introduction to the foundations of Mathematics. The use of the constructive method in Arithmetic and the axiomatic method in Geometry gives a unitary understanding of the backgrounds of geometry, of its development and of its organic link with the study of real numbers and algebraic structures.
A Primer on Hilbert Space Theory (UNITEXT for Physics)
by Carlo Alabiso and Ittay Weiss
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics the...
Higher Dimensional Categories: From Double To Multiple Categories
by Marco Grandis
The study of higher dimensional categories has mostly been developed in the globular form of 2-categories, n-categories, omega-categories and their weak versions. Here we study a different form: double categories, n-tuple categories and multiple categories, with their weak and lax versions.We want to show the advantages of this form for the theory of adjunctions and limits. Furthermore, this form is much simpler in higher dimension, starting with dimension three where weak 3-categories (also cal...
Techniques of Geometric Topology (London Mathematical Society Lecture Note)
by Roger A. Fenn