Representations and Nilpotent Orbits of Lie Algebraic Systems (Progress in Mathematics, #330)
This volume, a celebration of Anthony Joseph's fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled "Algebraic Modes of Representations," the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including:P...
The 2009 World Forecasts of Cane Molasses Export Supplies
by Philip M. Parker
Galois Theory of P-Extensions (Springer Monographs in Mathematics)
by Helmut Koch
Helmut Koch's classic is now available in English. Competently translated by Franz Lemmermeyer, it introduces the theory of pro-p groups and their cohomology. The book contains a postscript on the recent development of the field written by H. Koch and F. Lemmermeyer, along with many additional recent references.
Infinite Dimensional Lie Algebras (Progress in Mathematics, #44)
by Victor G. Kac
This is the third, substantially revised edition of this important monograph. The book is concerned with Kac-Moody algebras, a particular class of infinite-dimensional Lie algebras, and their representations. It is based on courses given over a number of years at MIT and in Paris, and is sufficiently self-contained and detailed to be used for graduate courses. Each chapter begins with a motivating discussion and ends with a collection of exercises, with hints to the more challenging problems.
Groups of Finite Morley Rank (Oxford Logic Guides, #26)
by Alexandre Borovik and Ali Nesin
The book is devoted to the theory of groups of finite Morley rank. These groups arise in model theory and generalize the concept of algebraic groups over algebraically closed fields. The book contains almost all the known results in the subject. Trying to attract pure group theorists in the subject and to prepare the graduate student to start the research in the area, the authors adopted an algebraic and self evident point of view rather than a model theoretic one, and developed the theory fr...
This volume resulted from presentations given at the international "Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie-Butcher Series", that took place at the Instituto de Ciencias Matematicas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowne...
Classical Artinian Rings And Related Topics
by Yoshitomo Baba and Kiyoichi Oshiro
Quasi-Frobenius rings and Nakayama rings were introduced by T Nakayama in 1939. Since then, these classical artinian rings have continued to fascinate ring theorists with their abundance of properties and structural depth. In 1978, M Harada introduced a new class of artinian rings which were later called Harada rings in his honour. Quasi-Frobenius rings, Nakayama rings and Harada rings are very closely interrelated. As a result, from a new perspective, we may study the classical artinian rings t...
In this text, integral geometry deals with Radon's problem of representing a function on a manifold in terms of its integrals over certain submanifolds-hence the term the Radon transform. Examples and far-reaching generalizations lead to fundamental problems such as: (i) injectivity, (ii) inversion formulas, (iii) support questions, (iv) applications (e.g., to tomography, partial di erential equations and group representations). For the case of the plane, the inversion theorem and the support t...
Semigroups, Automata And Languages
The conference was a rare occasion for different schools and perspectives to meet in a single event, bringing together researchers interested in semigroups, automata and languages. The proceedings contain both surveys and research reports, which have been carefully refereed. They should be of value to both mathematicians and computer scientists.
From the reviews of Vol. IV: "This is the fourth volume of J-P. Serre's "Collected Papers" covering the period 1985-1998. Items, numbered 133-173, contain "the essence" of his work from that period and are devoted to number theory, algebraic geometry, and group theory. Half of them are articles and another half are summaries of his courses in those years and letters. Most courses have never been previously published, nor proofs of the announced results. The letters reproduced, however (in partic...
Hexagonal Graph Paper Notebook (Composition Graph Journal Diary, #4)
by Sara Blank Book
Hexagonal Graph Paper Notebook; 1/4 Inch Side Lenght Hexes (Composition Graph Journal Diary, #1)
by Sara Blank Book
Progress in Galois Theory (Developments in Mathematics, #12)
The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp son who led...
Geometric Phases in Classical and Quantum Mechanics (Progress in Mathematical Physics, #36)
by Dariusz Chruscinski and Andrzej Jamiolkowski
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
Pseudo-Riemannian Homogeneous Structures (Developments in Mathematics, #59)
by Giovanni Calvaruso and Marco Castrillon Lopez
This book provides an up-to-date presentation of homogeneous pseudo-Riemannian structures, an essential tool in the study of pseudo-Riemannian homogeneous spaces. Benefiting from large symmetry groups, these spaces are of high interest in Geometry and Theoretical Physics. Since the seminal book by Tricerri and Vanhecke, the theory of homogeneous structures has been considerably developed and many applications have been found. The present work covers a gap in the literature of more than 35 years...
Ischia Group Theory 2006
by Akbar Rhemtulla, Trevor O. Hawkes, Patrizia Longobardi, and Mercede Maj
Group Theory - Proceedings Of The Biennial Ohio State - Denison Conference
This volume is a collection of invited papers on the theory of groups, most of which were presented at the biennial Ohio State-Denison Conference, May 1992, in memory of Hans Zassenhaus. These papers treat important topics in the theory of p-groups, solvable groups, finitely presented groups, arithmetic groups, monodromy groups and the general structure and representation theory of groups. Of particular note are papers by John Walter on root systems, by Leonard Scott on integral equivalence of p...
Ernst Witt, 1911-1991, was one of the most ingenious mathematicians of this century and has decisively shaped the development of various mathematical fields like algebra, number theory, group theory, combinatorics and Lie theory. Among his most important results are the Witt ring of quadratic forms and the ring of Witt vectors. In this volume a complete collection of Witt's research papers are published together for the first time; it also contains various, so far unpublished, articles, facsimil...
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduat...
Properties of Closed 3-Braids and Braid Representations of Links (SpringerBriefs in Mathematics)
by Alexander Stoimenow
This book studies diverse aspects of braid representations via knots and links. Complete classification results are illustrated for several properties through Xu's normal 3-braid form and the Hecke algebra representation theory of link polynomials developed by Jones. Topological link types are identified within closures of 3-braids which have a given Alexander or Jones polynomial. Further classifications of knots and links arising by the closure of 3-braids are given, and new results about 4-bra...
Base Change for GL(2). (AM-96), Volume 96 (Annals of Mathematics Studies)
by Robert P. Langlands
R. Langlands shows, in analogy with Artin's original treatment of one-dimensional p, that at least for tetrahedral p, L(s, p) is equal to the L-function L(s, ?) attached to a cuspdidal automorphic representation of the group GL(2, /A), /A being the adele ring of the field, and L(s, ?), whose definition is ultimately due to Hecke, is known to be entire. The main result, from which the existence of ? follows, is that it is always possible to transfer automorphic representations of GL(2) over one n...