This book is for developers who want to use Python to write programs that lean heavily on functional programming design patterns. You should be comfortable with Python programming, but no knowledge of functional programming paradigms is needed.
If you are a Python novice or an experienced developer and want to explore data visualization libraries, then this is the book for you. No prior charting or graphics experience is needed.
Python Programming for Beginners (Python Programming Language)
by Eric Scratch and Michael Scratch
Python Programming for Beginners - 5 in 1 Crash Course (Your Python Best Friend, #6)
by Martin Evans
Coding Python Color Version (Python Programming Language, #1)
by Michael And Eric Scratch
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After read...
Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and p...
Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pan...
Learn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis. Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use e...
Python and R for the Modern Data Scientist
by Rick J Scavetta and Boyan Angelov
Dive into Python's advanced possibilities, including algorithm analysis, graphs, scale-free networks, and cellular automata with this in-depth, hands-on guide. Whether you're an intermediate-level Python programmer, or a student of computational modeling, you'll examine data structures, complexity science, and other fascinating topics through a series of exercises, easy-to-understand explanations, and case studies. Think Complexity presents features that make Python such a simple and powerful l...
Hands-On GPU Programming with Python and CUDA
by Dr. Brian Tuomanen
Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book.Key FeaturesExpand your background in GPU programming—PyCUDA, scikit-cuda, and NsightEffectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolverApply GPU programming to modern data science applicationsBook DescriptionHands-On GPU Programming with Python and CUDA hits the ground running: you’ll...