A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring (Memoirs of the American Mathematical Society)

by Ehud Friedgut, Vojtech Rodl, Andrzej Rucinski, and Prasad Tetali

0 ratings • 0 reviews • 0 shelved
Book cover for A Sharp Threshold for Random Graphs with a Monochromatic Triangle in Every Edge Coloring

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

Let $\cal{R}$ be the set of all finite graphs $G$ with the Ramsey property that every coloring of the edges of $G$ by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let $G(n,p)$ be the random graph on $n$ vertices with edge probability $p$. We prove that there exists a function $\widehat c=\widehat c(n)=\Theta(1)$ such that for any $\varepsilon > 0$, as $n$ tends to infinity, $Pr\left[G(n,(1-\varepsilon)\widehat c/\sqrt{n}) \in \cal{R} \right] \rightarrow 0$ and $Pr \left[G(n,(1+\varepsilon)\widehat c/\sqrt{n}) \in \cal{R}\ \right] \rightarrow 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemeredi's Regularity Lemma to a certain hypergraph setting.
  • ISBN13 9780821838259
  • Publish Date 1 February 2006
  • Publish Status Active
  • Publish Country US
  • Imprint American Mathematical Society
  • Edition illustrated Edition
  • Format Paperback
  • Pages 66
  • Language English