Intersection and Decomposition Algorithms for Planar Arrangements

by Pankaj K. Agarwal

0 ratings • 0 reviews • 0 shelved
Book cover for Intersection and Decomposition Algorithms for Planar Arrangements

Bookhype may earn a small commission from qualifying purchases. Full disclosure.

Several geometric problems can be formulated in terms of the arrangement of a collection of curves in a plane, which has made this one of the most widely studied topics in computational geometry. This book, first published in 1991, presents a study of various problems related to arrangements of lines, segments, or curves in the plane. The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport-Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed. Researchers in computational and combinatorial geometry should find much to interest them in this book.
  • ISBN13 9780521168472
  • Publish Date 11 August 2011 (first published 26 April 1991)
  • Publish Status Active
  • Publish Country GB
  • Imprint Cambridge University Press
  • Format Paperback (US Trade)
  • Pages 296
  • Language English