About fifty years aga S. G. Mikhlin, in solving the regularization problem for two-dimensional singular integral operators [56], assigned to each such operator a func- tion which he called a symbol, and showed that regularization is possible if the infimum of the modulus of the symbol is positive. Later, the notion of a symbol was extended to multidimensional singular integral operators (of arbitrary dimension) [57, 58, 21, 22]. Subsequently, the synthesis of singular integral, and differential operators [2, 8, 9]led to the theory of pseudodifferential operators [17, 35] (see also [35(1)-35(17)]*), which are naturally characterized by their symbols. An important role in the construction of symbols for many classes of operators was played by Gelfand's theory of maximal ideals of Banach algebras [201. Using this the- ory, criteria were obtained for Fredholmness of one-dimensional singular integral operators with continuous coefficients [34 (42)], Wiener-Hopf operators [37], and multidimensional singular integral operators [38 (2)]. The investigation of systems of equations involving such operators has led to the notion of matrix symbol [59, 12 (14), 39, 41].
This notion plays an essential role not only for systems, but also for singular integral operators with piecewise-continuous (scalar) coefficients [44 (4)]. At the same time, attempts to introduce a (scalar or matrix) symbol for other algebras have failed.
- ISBN10 3034854641
- ISBN13 9783034854641
- Publish Date 1 September 2014 (first published 1 January 1987)
- Publish Status Withdrawn
- Out of Print 18 October 2014
- Publish Country US
- Imprint Birkhauser
- Format Paperback (US Trade)
- Pages 220
- Language English