Dans un espace de BANACH H soit A(t) une famille d'operateurs non bornes, tE [0, TJ pour fixer les idees. On appelle equation difterentielle operationneUe (lineaire) une equation de la forme A(t)u(t)]u'(t) =f(t), la fonction f Hant donnee continue de [0, TJ dans H, la fonction u Hant une fois continument differentiable dans [0, TJ a valeurs dans H, u(t) appartenant a D(A(t)) (domaine de A(t)) pour chaque tE[O, T]. Les exemples les plus importants sont ceux Oll A(t) est un systeme differentiel, le domaine de A(t) Hant alors fixe par des conditions aux limites. Le probleme de CAUCHY consiste a trouver une solution de (*), verifiant la condition initiale u(O) = u, U donne (dans D(A(O))). o o Mais il est classique que, pour bien des applications, le probleme pose sous la forme precedente impose des conditions trop restrictives a u. Il faut introduire alors la notion de solution faible de ce probleme; il y a un tres grand nombre de telles notions; une classification en est donnee au Chap. 1. Les Chap. IV, V, VII, IX, X donnent diverses con- ditions suffisantes portant sur les A (t) pour que tel ou tel probleme faible admette une solution et une seule; on y Hudie la regularite de ces solutions, et les meilleurs domaines Oll l' on doit prendre les donnees initiales.
- ISBN10 3662237407
- ISBN13 9783662237403
- Publish Date 1 January 1961
- Publish Status Active
- Publish Country DE
- Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
- Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K
- Edition Softcover Reprint of the Original 1st 1961 ed.
- Format Paperback (US Trade)
- Pages 292
- Language German