Book 154

This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. It emphasizes the geometric aspects of the theory and treats topics such as braids, homeomorphisms of surfaces, surgery of 3-manifolds (Kirby calculus), and branched coverings. This attractive geometric material, interesting in itself yet not previously gathered in book form, constitutes the basis of the last two chapters, where the Jones-Witten invariants are constructed via the rigorous skein algebra approach (mainly due to the Saint Petersburg school). Unlike several recent monographs, where all of these invariants are introduced by using the sophisticated abstract algebra of quantum groups and representation theory, the mathematical prerequisites are minimal in this book. Numerous figures and problems make it suitable as a course text and for self-study.

Book 170

This book is devoted to the geometry and arithmetic of elliptic curves and to elliptic functions with applications to algebra and number theory. It includes modern interpretations of some famous classical algebraic theorems such as Abel's theorem on the lemniscate and Hermite's solution of the fifth degree equation by means of theta functions. Suitable as a text, the book is self-contained and assumes as prerequisites only the standard one-year courses of algebra and analysis.