Studies in Computational Mathematics
2 total works
The solutions of systems of linear and nonlinear equations occurs in many situations and is therefore a question of major interest. Advances in computer technology has made it now possible to consider systems exceeding several hundred thousands of equations. However, there is a crucial need for more efficient algorithms.The main focus of this book (except the last chapter, which is devoted to systems of nonlinear equations) is the consideration of solving the problem of the linear equation Ax = b by an iterative method. Iterative methods for the solution of this question are described which are based on projections. Recently, such methods have received much attention from researchers in numerical linear algebra and have been applied to a wide range of problems.The book is intended for students and researchers in numerical analysis and for practitioners and engineers who require the most recent methods for solving their particular problem.
This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided – including some never before published results and applications. Although intended for researchers in the field, and for those using extrapolation methods for solving particular problems, this volume also provides a valuable resource for graduate courses on the subject.