Springer-Lehrbuch
1 total work
Das Gebiet des "Zahlens von Gitterpunkten in Polytopen", auch Ehrhart-Theorie genannt, bietet verschiedene Verbindungen zu elementarer endlicher Fourier-Analysis, Erzeugendenfunktionen, dem Munzenproblem von Frobenius, Raumwinkeln, magischen Quadraten, Dedekind-Summen, algorithmischer Geometrie und mehr. Die Autoren haben mit dem Buch einen roten Faden geknupft, der diese Verbindungen aufzeigt und so die grundlegenden und dennoch tiefgehenden Ideen aus diskreter Geometrie, Kombinatorik und Zahlentheorie anschaulich verbindet.
Mit 250 Aufgaben und offenen Problemen fuhlt sich der Leser als aktiver Teilnehmer, und der einnehmende Stil der Autoren foerdert solche Beteiligung. Die vielen fesselnden Bilder, die die Beweise und Beispiele begleiten, tragen zu dem einladenden Stil dieses einzigartigen Buches bei.