Book 5

In last thirty years an explosion of interest in the study of nonlinear dynamical systems occured. The theory of one-dimensional dynamical systems has grown out in many directions. One of them has its roots in the Sharkovski0 Theorem. This beautiful theorem describes the possible sets of periods of all cycles of maps of an interval into itself. Another direction has its main objective in measuring the complexity of a system, or the amount of chaos present in it. A good way of doing this is to compute topological entropy of the system. The aim of this book is to provide graduate students and researchers with a unified and detailed exposition of these developments for interval and circle maps. Many comments are added referring to related problems, and historical remarks are made.

Book 5

This book introduces the reader to the two main directions of one-dimensional dynamics. The first has its roots in the Sharkovskii theorem, which describes the possible sets of periods of all cycles (periodic orbits) of a continuous map of an interval into itself. The whole theory, which was developed based on this theorem, deals mainly with combinatorial objects, permutations, graphs, etc.; it is called combinatorial dynamics. The second direction has its main objective in measuring the complexity of a system, or the degree of “chaos” present in it; for that the topological entropy is used. The book analyzes the combinatorial dynamics and topological entropy for the continuous maps of either an interval or the circle into itself.