Series In Applied And Computational Mathematics
2 primary works
Book 2
The "Hyperboloidal Foliation Method" introduced in this monograph is based on a (3 + 1) foliation of Minkowski spacetime by hyperboloidal hypersurfaces. This method allows the authors to establish global-in-time existence results for systems of nonlinear wave equations posed on a curved spacetime. It also allows to encompass the wave equation and the Klein-Gordon equation in a unified framework and, consequently, to establish a well-posedness theory for a broad class of systems of nonlinear wave-Klein-Gordon equations. This book requires certain natural (null) conditions on nonlinear interactions, which are much less restrictive that the ones assumed in the existing literature. This theory applies to systems arising in mathematical physics involving a massive scalar field, such as the Dirac-Klein-Gordon systems.
Book 3
Global Nonlinear Stability Of Minkowski Space For Self-gravitating Massive Fields, The
by Philippe G. LeFloch and Yue Ma
Published 13 October 2017
This book is devoted to the Einstein's field equations of general relativity for self-gravitating massive scalar fields. We formulate the initial value problem when the initial data set is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish the existence of an Einstein development associated with this initial data set, which is proven to be an asymptotically flat and future geodesically complete spacetime.