The classification of finite simple groups is a landmark result of modern mathematics. The multipart series of monographs which is being published by the AMS (Volume 40.1-40.7 and future volumes) represents the culmination of a century-long project involving the efforts of scores of mathematicians published in hundreds of journal articles, books, and doctoral theses, totaling an estimated 15,000 pages. This part 7 of the series is the middle of a trilogy (Volume 40.5, Volume 40.7, and forthcoming Volume 40.8) treating the Generic Case, i.e., the identification of the alternating groups of degree at least 13 and most of the finite simple groups of Lie type and Lie rank at least 4. Moreover, Volumes 40.4-40.8 of this series will provide a complete treatment of the simple groups of odd type, i.e., the alternating groups (with two exceptions) and the groups of Lie type defined over a finite field of odd order, as well as some of the sporadic simple groups. In particular, this volume completes the construction, begun in Volume 40.5, of a collection of neighboring centralizers of a particularly nice form. All of this is then applied to complete the identification of the alternating groups of degree at least 13.

The book is suitable for graduate students and researchers interested in the theory of finite groups.

The book provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the "even case", where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of "noncharacteristic 2 type". However, this book provides much more. Chapter 0 is a modern overview of the logical structure of the entire classification. Chapter 1 is a concise but complete outline of the "odd case" with updated references, while Chapter 2 sets the stage for the remainder of the book with a similar outline of the "even case". The remaining six chapters describe in detail the fundamental results whose union completes the proof of the classification theorem. Several important subsidiary results are also discussed. In addition, there is a comprehensive listing of the large number of papers referenced from the literature. Appendices provide a brief but valuable modern introduction to many key ideas and techniques of the proof. Some improved arguments are developed, along with indications of new approaches to the entire classification-such as the second and third generation projects-although there is no attempt to cover them comprehensively. The work should appeal to a broad range of mathematicians-from those who just want an overview of the main ideas of the classification, to those who want a reader's guide to help navigate some of the major papers, and to those who may wish to improve the existing proofs.

Classification of Finite Simple Groups (CFSG) is a major project involving work by hundreds of researchers. The work was largely completed by about 1983, although final publication of the "quasithin" part was delayed until 2004. Since the 1980s, CFSG has had a huge influence on work in finite group theory and in many adjacent fields of mathematics. This book attempts to survey and sample a number of such topics from the very large and increasingly active research area of applications of CFSG.

The book is based on the author's lectures at the September 2015 Venice Summer School on Finite Groups. With about 50 exercises from original lectures, it can serve as a second-year graduate course for students who have had first-year graduate algebra. It may be of particular interest to students looking for a dissertation topic around group theory. It can also be useful as an introduction and basic reference; in addition, it indicates fuller citations to the appropriate literature for readers who wish to go on to more detailed sources.

This book completes a trilogy (Numbers 5, 7, and 8) of the series The Classification of the Finite Simple Groups treating the generic case of the classification of the finite simple groups. In conjunction with Numbers 4 and 6, it allows us to reach a major milestone in our series--the completion of the proof of the following theorem: Theorem O: Let G be a finite simple group of odd type, all of whose proper simple sections are known simple groups. Then either G is an alternating group or G is a finite group of Lie type defined over a field of odd order or G is one of six sporadic simple groups.

Put another way, Theorem O asserts that any minimal counterexample to the classification of the finite simple groups must be of even type. The work of Aschbacher and Smith shows that a minimal counterexample is not of quasithin even type, while this volume shows that a minimal counterexample cannot be of generic even type, modulo the treatment of certain intermediate configurations of even type which will be ruled out in the next volume of our series.

For each of the 26 sporadic finite simple groups, the authors construct a 2-completed classifying space using a homotopy decomposition in terms of classifying spaces of suitable 2-local subgroups. This construction leads to an additive decomposition of the mod 2 group cohomology. The authors also summarize the current status of knowledge in the literature about the ring structure of the mod 2 cohomology of sporadic simple groups.

The classification of the finite simple groups is one of the major feats of contemporary mathematical research, but its proof has never been completely extricated from the journal literature in which it first appeared. This book serves as an introduction to a series devoted to organizing and simplifying the proof. The purpose of the series is to present as direct and coherent a proof as is possible with existing techniques. This first volume, which sets up the structure for the entire series, begins with largely informal discussions of the relationship between the Classification Theorem and the general structure of finite groups, as well as the general strategy to be followed in the series and a comparison with the original proof. Also listed are background results from the literature that will be used in subsequent volumes. Next, the authors formally present the structure of the proof and the plan for the series of volumes in the form of two grids, giving the main case division of the proof as well as the principal milestones in the analysis of each case. Thumbnail sketches are given of the ten or so principal methods underlying the proof. Much of the book is written in an expository style accessible to nonspecialists.

The classification of finite simple groups is a landmark result of modern mathematics. The original proof is spread over scores of articles by dozens of researchers. In this multivolume book, the authors are assembling the proof with explanations and references. It is a monumental task. The book, along with background from sections of the previous volumes, presents critical aspects of the classification. In four prior volumes (Surveys of Mathematical Monographs, Volumes 40.1, 40.2, 40.3, and 40.4), the authors began the proof of the classification theorem by establishing certain uniqueness and preuniqueness results. In this volume, they now begin the proof of a major theorem from the classification grid, namely Theorem ${\mathcal C 7$. The book is suitable for graduate students and researchers interested in group theory.

This book is the ninth volume in a series whose goal is to furnish a careful and largely self-contained proof of the classification theorem for the finite simple groups. Having completed the classification of the simple groups of odd type as well as the classification of the simple groups of generic even type (modulo uniqueness theorems to appear later), the current volume begins the classification of the finite simple groups of special even type. The principal result of this volume is a classification of the groups of bicharacteristic type, i.e., of both even type and of $p$-type for a suitable odd prime $p$. It is here that the largest sporadic groups emerge, namely the Monster, the Baby Monster, the largest Conway group, and the three Fischer groups, along with six finite groups of Lie type over small fields, several of which play a major role as subgroups or sections of these sporadic groups.