Mathematics and Its Applications
2 primary works
Book 79
Theory and Applications of Convolution Integral Equations
by Hari M Srivastava and R. G. Buschman
Published 31 August 1992
One service mathematics has rendered the 'Et moi ...* si favait su comment en revenir, je human race. It has put common sense back n'y serais point a1l6.' lules Verne where it belongs, on the topmost shelf next to the dusty eanister labelled 'discarded nonsense' . Erie T. Bell The series is divergent; therefore we may be able to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari- ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci- ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser- vice topology has rendered mathematical physics ...'; 'One service logic has rendered computer science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. This series, Mathematics and Its Applications, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope.
At the time I wrote "Growing specia1ization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and It also happens, quite often in related fields does not grow only by putting forth new branches.
At the time I wrote "Growing specia1ization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and It also happens, quite often in related fields does not grow only by putting forth new branches.
Book 377
Integral Transformations, Operational Calculus, and Generalized Functions
by R. G. Buschman
Published 31 July 1996
It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".